Quantum Monte Carlo calculation of the binding energy of bilayer graphene.
نویسندگان
چکیده
We report diffusion quantum Monte Carlo calculations of the interlayer binding energy of bilayer graphene. We find the binding energies of the AA-and AB-stacked structures at the equilibrium separation to be 11.5(9) and 17.7(9) meV/atom, respectively. The out-of-plane zone-center optical phonon frequency predicted by our binding-energy curve is consistent with available experimental results. As well as assisting the modeling of interactions between graphene layers, our results will facilitate the development of van der Waals exchange-correlation functionals for density functional theory calculations.
منابع مشابه
On the Calculation of Room Temperature Correlated Interlayer Transport in Bilayer Heterojunction Systems
We discuss a methodology for calculating the interlayer transport characteristics of electron-hole bilayer graphene at spontaneous coherence using path integral Monte Carlo and recursive scattering matrices at room temperature. We find transport characteristics very similar to that of the quantum Hall bilayer case in that there is a large peak in the differential interlayer conductance at low i...
متن کاملProbing quantum coherent states in bilayer graphene
An active area of post-CMOS device research is to study the possibility of realizing and exploiting exotic quantum states in nanostructures. In this paper we consider one such system, two layers of graphene separated by an oxide insulator. This system has been predicted to have an excitonic condensate that survives above room temperature. We describe a computational technique—path integral quan...
متن کاملQuantum modeling of light absorption in graphene based photo-transistors
Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...
متن کاملMagnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study.
We study the electronic properties of graphene with a finite concentration of vacancies or other resonant scatterers by a straightforward lattice quantum Monte Carlo calculation. Taking into account a realistic long-range Coulomb interaction, we calculate the distribution of the spin density associated with midgap states and demonstrate antiferromagnetic ordering. An energy gap is open due to i...
متن کاملStudy on interaction between carbon nanotubes (CNTs) as nano carrier for loading and delivery of Methotrexate
The Methotrexate delivery by carbon nanotubes (CNTs) and the structural changes of drugcombination upon the carbon nanotubes and bio thermodynamic of the drug have been studied by molecularcomputational methods. Computational molecular methods have been fulfilled by molecular mechanics methods with four force field, and semi empirical with all methods. We investigate different param...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 115 11 شماره
صفحات -
تاریخ انتشار 2015